Augmenting daily MODIS LST with AIRS surface temperature retrievals to estimate ground temperature and permafrost extent in High Mountain Asia


Permafrost in High Mountain Asia (HMA) is becoming increasingly vulnerable to thaw due to climate change. However, the lack of either in situ ground surface or borehole temperature data beyond the Tibetan Plateau prevents comprehensive assessments of its impact on the regional hydrologic cycle and local cascading hazards. Although past studies have generated estimates of permafrost extent in Central Asia, many are limited to the Tibetan Plateau, excluding the more remote reaches of the Tien Shan, Pamirs, and Himalayas. By leveraging surface temperatures from both the Moderate Resolution Imaging Spectroradiometer (MODIS) and Atmospheric Infra-Red Sounder (AIRS), this study advances further understanding of remotely sensed permafrost occurrence at high altitudes, which are prone to error due to frequent cloud cover. We demonstrate that the fusion of MODIS and AIRS products can accurately estimate long-term thermal regimes of the subsurface, with reported correlation coefficients of 0.773 and 0.560, RMSEs of 0.890 °C and 0.680 °C, and biases of 0.003 °C and 0.462 °C, respectively, for the ground surface and the depth of zero annual amplitude, during a reference period of 2003–2016. Furthermore, we provide a range of possible permafrost extents based on established equations for calculating the temperature at the top of the permafrost to demonstrate temperature sensitivity to soil moisture and snow cover. The MODIS-AIRS product is recommended to be a robust source of ground temperature estimates, which may be sufficient for inferring mountain permafrost presence in HMA. Incorporating the influence of soil moisture and snow depth, although limited by biased estimates, also produces estimates of permafrost regional areas comparable to previously reported permafrost indices. A total permafrost area of 1.69 (± 0.32) million km2 is estimated for the entire HMA, across 15 mountain subregions.

Remote Sensing of Environment

Add the full text or supplementary notes for the publication here using Markdown formatting.